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Reformulation of density functional theory for generation of the nonuniform density distribution
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~Received 19 December 2000; published 24 May 2001!

The concept of universality of the free energy density functional and the weighted density approximation are
combined to provide the density distribution profile of nonuniform fluids from the predictions of integral
equation theory for the corresponding uniform fluids. To obtain the expression for the free energy as a function
of the density distribution, the present formalism expresses the difference of the first order direct correlation
function of a nonuniform fluid with respect to its uniform fluid counterpart as a function of the weighted
density, which is also a function of the space position. The input parameters used in the present approach are
the radial distribution function and the second order direct correlation function of the corresponding uniform
fluid. All of these parameters can be easily obtained from numerical solution of Ornstein-Zernike integral
equation theory. The present approach is based on the formalism of classical density functional theory~DFT!
and its application to two kinds of fluid under different external potentials is presented. The agreement of the
theoretical predictions with the corresponding computer simulation data is good. The present formulation of
DFT can treat fluids of different interaction potential under nonzero external fields in a unified way.
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I. INTRODUCTION

An accurate description of the structure and thermo
namics of nonuniform fluids@1,2# is of basic as well as prac
tical importance for its relevance in various phenomena s
as selective adsorption from mixtures, solvation forces
fluids, etc. Research on nonuniform fluids has largely
volved calculation of the nonuniform density distributio
profile of the fluid particles, the most important characteris
of the nonuniform fluid, which results from interaction b
tween the fluid particles and an external field such a
‘‘wall.’’ Although the integral equation theory~IET! method
@3#, originally devised for uniform fluids, was also extend
to be applicable to nonuniform fluids@1#, lower accuracy,
complexity of the numerical solution and inability to captu
the interesting phase transitions such as wetting phenom
limited its application as a standard method in the field
nonuniform fluid statistical thermodynamics.

The main approach for nonuniform fluids is classical de
sity functional theory~DFT!, which was introduced into clas
sical statistical mechanics in the early 1960s@4–6#. Classical
DFT has its quantum counterpart~quantum DFT!, originally
devised for the simplified solution of complicated quantu
many-body problems@7,8#. After the development of per
haps two dozen versions, classical DFT has evolved into
main types of methodology@9#. One is the functional pertur
bative expansion approximation@10–12# ~PEA! of the non-
uniform system’s excess free energy around the uniform
tem in powers of the density deviation between t
nonuniform density distribution and the bulk density, wi
the coefficients representing the direct correlation functi
~DCFs! of the uniform system. In most of the early studie
the expansion was truncated at the second order due to
lack of knowledge of the higher-order DCFs of even t
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uniform bulk fluid. Recently, some studies developed
higher-order expansion approximation by making use of
proximate higher-order DCFs@13–15#. Another such version
is the so-called weighted density approximation~WDA! and
its variants@16–19#, which are actually mappings of nonun
form systems onto their uniform counterparts and appro
mately include contributions to the free energy density fu
tional from all orders in density difference. In the WD
approach, it is the excess free energy or its functional der
tive ~the first order DCF! of the nonuniform fluid that is
approximated by that of the corresponding uniform fluid a
smoothed average density, which is actually a suita
weighted average of the physical density of the system un
consideration. The third version of DFT is the fundamen
measure theory by Rosenfeld@20,21#, which is based on geo
metrical considerations and specifies the excess free en
by reproducing the Percus-Yevick~PY! equation of state and
the second order DCF of the hard sphere fluid. The fou
version@22–24# proposed recently, resulted from the use
the concept of the universality of the free energy dens
functional and collected all orders beyond the second of
functional perturbative expansion in the form of a brid
functional. A characteristic of the original WDA is that th
weighted density and weighting function are coupled
gether. This fact requires iterative calculation, and thus
mendous computer time is required. This shortcoming
comes very obvious when methods of the WDA type a
extended to the case of mixtures@25–27#. Furthermore, the
input parameters include the excess free energy per par
and the excess chemical potential or the first order DCF
the corresponding uniform system, but it is usually difficu
to obtain these parameters for non-hard-sphere interac
potential fluids; thus, to treat the non-hard-sphere interac
potential system under nonzero external field, a perturba
method has to be employed, an intensive computational t
On the other hand, the PEA version of DFT requires hig
order DCFs beyond the second of the uniform system
©2001 The American Physical Society06-1
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input. However, accurate expressions for these higher-o
DCFs are usually not available. The suggested methodo
in Ref. @22# requires only the second order DCF and t
bridge functional of the uniform system as inputs and th
inputs can be easily obtained from Ornstein-Zernike integ
equation theory for the corresponding uniform system,
this methodology should be easy to use for various non
form fluids.

A necessary condition specified in Ref.@22# for the meth-
odology to be used is that the form of the bridge functio
must be one that expresses it as a functional of the indi
correlation functiong. g is then substituted by a combinatio
of the Ornstein-Zernike equation for the uniform system a
the Percus identity@Eq. ~8! below#. But in most cases the
bridge functional in IET cannot be expressed as a functio
of the indirect correlation function analytically; an approx
mation is needed; for example, the hypernetted chain
proximation @3#, the mean spherical approximation@3#, the
Rogers-Young~RY! approximation@28#, etc. Thus, the nec
essary condition limits the application of the methodology
nonuniform hard sphere fluids only. The condition com
from the requirement that theoretical predictions should
be dependent on the choice of origin of the coordinate s
tem and cannot be removed.

To widen the applicability of the methodology propos
in Ref. @22#, a numerical version of it was presented@29#, but
this numerical version is still not applicable to some fluid
such as Lennard-Jones fluids, where the bridge functiona
the IET cannot be expressed as a functional of the indi
correlation function even numerically and with a sing
value. To apply the methodology based on the universalit
the free energy density functional to various fluids in pr
ciple and overcome the shortcomings of previous version
DFT, we reformulate the classical DFT also by using t
universality of the free energy density functional, but t
present formulation avoids the use of the bridge functio
concept. Instead, it uses the concept of the weighted den
to incorporate the functional dependence of the free ene
on space position, but the input parameters include only
radial distribution function and the second order direct c
relation function of the corresponding uniform fluids.

The plan of the present paper is as follows. In Sec. II,
describe the present reformulation of classical DFT in det
In Sec. III, we apply the reformulation to several examples
nonuniform fluids to predict the density distribution an
compare the predictions with corresponding computer sim
lation data to show the validity and accuracy of the pres
procedure. In Sec. IV, there is some discussion and conc
ing remarks about the essential points of the present D
methodology.

II. REFORMULATION OF THE CLASSICAL DFT BASED
ON THE UNIVERSALITY OF THE FREE ENERGY

DENSITY FUNCTIONAL AND THE CONCEPT
OF WEIGHTED DENSITY

We consider a many-particle system~pure component! at
fixed temperaturekT5b21 and chemical potentialm under
the influence of an external potentialwext(r ). The grand po-
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tential Vmin of a system in thermal equilibrium is obtaine
by the basic variational principle@30#

Vmin5minV@r#, ~1!

where r(r ) is the single particle density distribution. Th
grand potential functionalV@r# is expressed as

V@r#5F@r#1E dr r~r !@w~r !2m#. ~2!

The Helmholtz free energy functionalF@r# may be di-
vided into two independent parts: an ideal gas partF id@r#
which is exactly known and is given as

F id@r#5b21E dr r~r !$ ln@r~r !l3#21% ~3!

wherel is the thermal de Broglie wavelength, and an exc
part Fex@r# which is not exactly known, but serves to ge
erate the hierarchy of direct correlation functions

C~n!~r1 ,r2 ,...,rn ;@r#!

52bdnFex@r#/dr~r1!dr~r2!...dr~rn!. ~4!

The equilibrium density profile of a nonuniform system
obtained by the Euler-Lagrange equation resulting from
variational principle Eq.~1!:

m5wext~r !1dF id@r#/dr~r !1dFex@r#/dr~r !. ~5!

For the case of the grand canonical ensemble we cons
here, the chemical potential of the nonuniform fluid is equ
to that of the bulk fluid@where wext(r )50 and r(r )5rb#.
This leads to the density profile equation

r~r !5rb exp$2bwext~r !1C~1!
„r ;@r~r !#…2C0

~1!~rb!%,
~6!

whereC0
(n) is the uniform fluid counterpart ofC(n). Now we

choose a particle situated at the origin of the bulk fluid
following the test particle method due to Percus@31#. For
this special type of inhomogeneity when the external pot
tial wext(r ) is equal to the interaction potential between p
ticles u(r ),

wext~r !5u~r !, ~7!

the single particle density function is given by

r~r !5rbg~r !, ~8!

whereg(r ) is the radial distribution function of the corre
sponding bulk fluid. Substituting Eqs.~7! and~8! into Eq.~6!
leads to

g~r !5exp$2bu~r !1C~1!
„r ;@g~r !rb#…2C0

~1!~rb!% ~9!

for a specified uniform fluid. The radial distribution functio
g(r ) can be obtained from the IET for uniform fluids, whic
is a combination of the Ornstein-Zernike~OZ! equation
6-2
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REFORMULATION OF DENSITY FUNCTIONAL THEORY . . . PHYSICAL REVIEW E63 061206
h~r !5C0
~2!~r ;rb!1rbE dr1 h~r1!C0

~2!~r ,r1 ;rb! ~10!

and a closure equation relating the correlation functions w
the bridge functionalB(r ),

g~r !5exp$2bu~r !1h~r !2C0
~2!~r ;rb!1B~r !%. ~11!

Each version of the IET corresponds to a definition for
bridge functional. BecauseFex@r# and thusC(1)

„r ;@r(r )#…,
its functional derivative with respect tor(r ), is, for a given
interaction potential, a universal functional@32# of the den-
sity distributionr(r ) and is independent of the external p
tential responsible for the generation of the density distri
tion r(r ), we can specify the functional form o
C(1)

„r ;@r(r )#… from the specific case where the external p
tential is the interaction potential between a particle situa
at the origin and the bulk particles. To do so, we first defi
a weighted densityr̄(r ) according to the second order dire
correlation function

r̄~r !5E dr 8 f C0
~2!~ ur2r 8u;rb!r~r 8!, ~12!

where the coefficientf can be specified by the normalizatio
condition

rb5E dr 8 f C0
~2!~ ur2r 8u;rb!rb . ~13!

Thus

f 51Y E dr 8 C0
~2!~ ur2r 8u;rb!. ~14!

Following the sum rule derived from the uniform flui
limit of Eq. ~4!,

E dr 8 C0
~2!~ ur2r 8u;rb!5C0

~1!8~rb!, ~15!

we obtain

f 51/C0
~1!8~rb!, ~16!

whereC0
(1)8(rb) is the derivative of the first order DCF o

the uniform fluid with respect to the argumentrb .
From Eqs.~12! and ~16!, we obtain

r̄~r !5E dr 8 r~r 8!C0
~2!~ ur2r 8u;rb!/C0

~1!8~rb!. ~17!

If we define

w~ ur12r2u;rb!5
C0

~2!~ ur12r2u;rb!

C0
~1!8~rb!

~18!

then Eq.~17! reduces to

r̄~r !5E dr 8 r~r 8!w~ ur2r 8u;rb!. ~19!
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Equation ~19! is actually equivalent to the simpl
weighted density approximation~SWDA! @33#. Now we de-
fine the functional C(1)

„r ;@r(r )#… as a function of the
weighted densityr̄(r ) denoted asG„r̄(r )…, that is,

C~1!
„r ;@r~r !#…5G„r̄~r !…. ~20!

The form of the functionG is determined as follows. Subst
tuting Eq. ~20! into Eq. ~6! and employing Eqs.~7! and ~8!
lead to

g~r !5exp$2bu~r !1G„r̄~r !…2C0
~1!~rb!%. ~21!

From the numerical solution of the OZ equation~10!, we can
get the radial distribution functiong(r ), which can be com-
bined with Eqs.~8! and ~17! to calculate the weighted den
sity r̄(r ). Then the weighted density obtained is substitu
into Eq. ~21! to arrive at the following equation:

C~1!
„r ;@r~r !#…2C0

~1!~rb!5G„r̄~r !…2C0
~1!~rb!

5 ln@g~r !#1bu~r !. ~22!

For a specified uniform fluid with specific interaction p
tential u(r ) and bulk densityrb , we can calculate the
weighted densityr̄(r ) at different space points. From Eq
~22!, we can get the form of the functionG, that is, the
functional form ofC(1)

„r ;@r(r )#… with respect to the density
distribution functionr(r ). The universality of the functiona
form of C(1)

„r ;@r(r )#… enables us to substitute Eq.~22! into
Eq. ~6! to obtain the nonuniform fluid density distributio
r(r ) under an arbitrary external potentialwext(r ).

It should be noted that the profile of the radial distributi
function g(r ) oscillates, so it is possible that at some spa
points, for example,r1 andr2 , the calculated weighted den
sity has the same value butg(r1) andg(r2) are different, so
G becomes a many-valued function ofr̄(r ) at some points of
r̄(r ). This is surely the case for the present example o
hard sphere fluid and a Lennard-Jones fluid. For these ca
we chose the space points of the radial distribution funct
profile g(r ) for which the calculated weighted density is ne
and below the bulk density. The calculated weighted den
is then exactly in the numerical range needed for the itera
solution of Eq.~6!. Then a smooth curve, as shown in Fig.
below for the case of the Lennard-Jones fluid state po
rbs350.75, kT/e51.304, can be obtained. We can use
three-point interpolation procedure with three points o
tained as above as inputs to specify the functional relati
ship G@r(r )# for the iterative solution of Eq.~6! for a non-
uniform density distribution with any external potential. Th
weighted density is an average of the actual density distr
tion and the weighting function has a smoothing effect on
oscillatory density profile. Thus, by choosing a good init
value, for example, the predictions of second order pertur
tive DFT or the SWDA, for the iterative solution of Eq.~6!,
we can expect that the calculated weighted densities from
density distribution profile of Eq.~6! will fall into the re-
quired numerical range even if the external potential is
6-3
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SHIQI ZHOU PHYSICAL REVIEW E 63 061206
large that strong oscillation of the density distribution profi
results. This is surely the case for the figures presented
low.

III. NUMERICAL SOLUTION AND COMPARISON WITH
COMPUTER SIMULATION RESULTS

First, we apply the above formulation of DFT to two
cases: ~1! a hard sphere fluid confined in a spherical cavi
with a hard wall of radius,R, and~2! a hard sphere fluid near
a hard wall. For case~1!, the external potentialwext(r ) re-
sponsible for the generation of the density distributionr(r )
has the form

wext~r !5H `, ur u/s.R

0, ur u/s,R,
~23!

and for case~2!

wext~z!5H `, z/s,0.5

0, 0.5,z/s.
~24!

To proceed numerically, the second order DCF of t
uniform hard sphere fluid is needed. In the present paper,
PY result @34# is employed. To solve the OZ equation fo
g(r ), the RY approximation@28# is employed because it
provides the most accurate data forg(r ). A numerically it-
erative and self-consistent procedure is employed to so
the nonlinear integral equation~6!. r(r )5rb is chosen as
initial value for solution of the SDWA version of DFT, and
the predictions of the SWDA version are used as initial va
ues for solution of the present reformulation of DFT.

In Figs. 1 and 2, the predictions of the present formulati
are plotted with the predictions of the SWDA and the corr
sponding computer simulation data@35# for case~1!. It is
shown that the accuracy of the present formulation is
superior to that of the SWDA, and the present predictio
coincide with the corresponding computer simulation da
almost point by point. I also compared the predictions of t
present formulation with those of the most accurate DF

FIG. 1. Density profiles of a hard sphere fluid (rbs350.62)
confined in a spherical cavity with a hard wallR54.5s. The lines
correspond to the predictions of the theory and the points to
corresponding computer simulation data@35#.
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@22,36# in the literature and found that the present pred
tions are superior. To make the figures clear, the predicti
of these two DFTs are not plotted in the same figures.
also compare the predictions of the present reformula
based on the RY and PY approximations for the radial d
tribution functiong(r ). It was found that the results based o
the RY approximation are superior to those based on the
approximation. It is well known that the PY approximation
less accurate than the RY approximation for prediction of
RDF of the bulk fluid. This fact indicates further the impo
tance of incorporation of knowledge of the bulk fluid radi
distribution functiong(r ) into the DFT approximation.

In Figs. 3 and 4, we compare the predictions of t
present formulation of DFT with the corresponding compu
simulation data@37# for case ~2!. The agreement is also
good.

To further test the present formulation, we apply it to
additional case: a Lennard-Jones fluid confined between
hard walls at separationH. For this case, the external pote
tial has the form

wext~z!5H `, z/s,0.5 and/or z/s.H10.5

0, 0.5,z/s,H10.5.
~25!

e

FIG. 2. As in Fig. 1 butrbs350.75.

FIG. 3. Density profiles of a hard sphere fluid (rbs350.575)
near a hard wall. The line corresponds to the predictions of
present formulation and the points to the corresponding comp
simulation data@37#.
6-4
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To proceed computationally, the quantitiesC0
(2)(r ;rb)

andg(r ) are needed. In the present paper, they are obtain
by solving numerically the OZ equation~10! and the closing
equation~11!. To proceed numerically with Eqs.~10! and
~11!, we use the thermodynamically self-consistent Roger
Young approximation@28#. For the Lennard-Jones fluid, the
interaction potentialu(r ) has the form

u~r !54e@~s/r !122~s/r !6# ~26!

where s and e characterize the interaction range an
strength, respectively.

The density profile equation~6! is plotted and compared
with the corresponding computer simulation results@38# in
Figs. 5 and 6 forH/s512 and 4, respectively. In Figs. 5 and
6, the bulk parameters arerbs350.75 andkT/e51.304.
We plotted the functional relationship ofC(1)

„r ;@r(r )#…
2C0

(1)(rb) as a function of the weighted densityr̄(r ), which
is also a function of space position, in Fig. 7. We used th
result of second order perturbative DFT as the initial valu
for the iterative solution of the present version of DFT. On
can see that the predictions of the present method for t

FIG. 4. As in Fig. 3 butrbs350.813.

FIG. 5. Density profiles of a Lennard-Jones fluid~rbs350.75,
kT/e51.304! confined between two hard walls withH/s512. The
dots represent the corresponding Monte Carlo results@38#. Only
half the slit is shown.
06120
ed

s-

e
e

is

case are also in good agreement with the computer simu
tion results. This fact shows further not only the validity o
the present reformulation of DFT for fluids of various inter
action potential, but also that it is not necessary to employ
computationally intensive perturbative method for lon
range potential fluids. With an accurate numerical solution
the OZ equation, nonuniform long range potential fluids c
be studied in the present formalism of DFT in the same ma
ner as nonuniform hard sphere fluids.

IV. CONCLUDING REMARKS

The present version of DFT is based on the universality
the free energy density functionalFex@r# and hence of its
functional derivative2bdFex@r#/dr(r ), the quantity that is
required to produce the density distribution of nonunifor
fluids. The universality means that its mathematical form
independent of the particular external field, so we can obt
its universal form from some specific external field. In th
present paper, the interaction potential of bulk fluid particl

FIG. 6. As in Fig. 5 but withH/s54.

FIG. 7. The difference between the first order direct correlati
function of a nonuniform fluidC(1)

„r ;@r(r )#… and its uniform fluid
counterpart C0

(1)(rb) as a function of the weighted density
*dr 8 r(r 8)w(ur2r 8u;rb). The curve corresponds to the bulk pa
rametersrbs350.75 andkT/e51.304.
6-5
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SHIQI ZHOU PHYSICAL REVIEW E 63 061206
is chosen as this external field. Then, by the test part
method, we relate the nonuniform fluid under the spec
external field to the corresponding bulk fluid. The knowled
of the bulk fluid can easily be obtained from integral equ
tion theory, so we can obtain knowledge of nonuniform fl
ids from the predictions of integral equation theory for t
corresponding uniform fluids by the present formulation
DFT. Previous studies on classical DFT employed kno
edge of only the second order direct correlation function
bulk fluids, but structural information of the radial distribu
tion function of bulk fluids was not used. The present pa
provides a systematic procedure to incorporate effectiv
knowledge of the structure of the radial distribution functi
of bulk fluids into the DFT. Obviously, the accuracy of th
present formulation of DFT is strongly dependent on
accuracy of the radial distribution function of the bulk flui

Compared with other versions of DFT, the most nota
advantage of the present one is that it requires only the ra
distribution functiong(r ) and the second order direct corr
n

l
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lation functionC0
(2)(r ,r1 ;rb) of the bulk fluid as input. They

can be obtained easily from numerical solution of the O
equation. Another related advantage is that nonuniform
ids with different interaction potentials can be treated in
unified way, and it is not necessary to resort to the com
tationally complicated perturbative method for long ran
potential fluids.

With regard to its application to phase transitions, we o
discuss the problem in general. The present reformulatio
DFT differs from previous versions only by incorporatin
the radial distribution function of the homogeneous flu
which previous versions did not do. However, the radial d
tribution function and the DCF of a homogeneous fluid a
coupled together by the OZ equation and are two para
concepts, so the present reformulation can do all the thi
that previous versions can do. Our formalism should wo
well for the transition problems for which previous versio
of DFT work.
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