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Reformulation of density functional theory for generation of the nonuniform density distribution
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The concept of universality of the free energy density functional and the weighted density approximation are
combined to provide the density distribution profile of nonuniform fluids from the predictions of integral
equation theory for the corresponding uniform fluids. To obtain the expression for the free energy as a function
of the density distribution, the present formalism expresses the difference of the first order direct correlation
function of a nonuniform fluid with respect to its uniform fluid counterpart as a function of the weighted
density, which is also a function of the space position. The input parameters used in the present approach are
the radial distribution function and the second order direct correlation function of the corresponding uniform
fluid. All of these parameters can be easily obtained from numerical solution of Ornstein-Zernike integral
equation theory. The present approach is based on the formalism of classical density functiondiR&pry
and its application to two kinds of fluid under different external potentials is presented. The agreement of the
theoretical predictions with the corresponding computer simulation data is good. The present formulation of
DFT can treat fluids of different interaction potential under nonzero external fields in a unified way.
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[. INTRODUCTION uniform bulk fluid. Recently, some studies developed a
higher-order expansion approximation by making use of ap-
An accurate description of the structure and thermodyproximate higher-order DCH43-15. Another such version
namics of nonuniform fluidgl,2] is of basic as well as prac- is the so-called weighted density approximat{®4DA) and
tical importance for its relevance in various phenomena suclis variant§ 16—19, which are actually mappings of nonuni-
as selective adsorption from mixtures, solvation forces irform systems onto their uniform counterparts and approxi-
fluids, etc. Research on nonuniform fluids has largely in-mately include contributions to the free energy density func-
volved calculation of the nonuniform density distribution tional from all orders in density difference. In the WDA
profile of the fluid particles, the most important characteristicapproach, it is the excess free energy or its functional deriva-
of the nonuniform fluid, which results from interaction be- tive (the first order DCF of the nonuniform fluid that is
tween the fluid particles and an external field such as approximated by that of the corresponding uniform fluid at a
“wall.” Although the integral equation theordET) method  smoothed average density, which is actually a suitable
[3], originally devised for uniform fluids, was also extendedweighted average of the physical density of the system under
to be applicable to nonuniform fluidd], lower accuracy, consideration. The third version of DFT is the fundamental
complexity of the numerical solution and inability to capture measure theory by Rosenfdl0,21], which is based on geo-
the interesting phase transitions such as wetting phenomemaetrical considerations and specifies the excess free energy
limited its application as a standard method in the field ofby reproducing the Percus-Yevi¢RY) equation of state and
nonuniform fluid statistical thermodynamics. the second order DCF of the hard sphere fluid. The fourth
The main approach for nonuniform fluids is classical den-version[22—-24 proposed recently, resulted from the use of
sity functional theoryDFT), which was introduced into clas- the concept of the universality of the free energy density
sical statistical mechanics in the early 1968s6)]. Classical  functional and collected all orders beyond the second of the
DFT has its quantum counterpdguantum DFT, originally ~ functional perturbative expansion in the form of a bridge
devised for the simplified solution of complicated quantumfunctional. A characteristic of the original WDA is that the
many-body problemg$7,8]. After the development of per- weighted density and weighting function are coupled to-
haps two dozen versions, classical DFT has evolved into fougether. This fact requires iterative calculation, and thus tre-
main types of methodology®]. One is the functional pertur- mendous computer time is required. This shortcoming be-
bative expansion approximatidd0—12 (PEA) of the non- comes very obvious when methods of the WDA type are
uniform system’s excess free energy around the uniform sysextended to the case of mixturgg5—27. Furthermore, the
tem in powers of the density deviation between theinput parameters include the excess free energy per particle
nonuniform density distribution and the bulk density, with and the excess chemical potential or the first order DCF of
the coefficients representing the direct correlation functionshe corresponding uniform system, but it is usually difficult
(DCF9 of the uniform system. In most of the early studies,to obtain these parameters for non-hard-sphere interaction
the expansion was truncated at the second order due to tip@tential fluids; thus, to treat the non-hard-sphere interaction
lack of knowledge of the higher-order DCFs of even thepotential system under nonzero external field, a perturbative
method has to be employed, an intensive computational task.
On the other hand, the PEA version of DFT requires high-
*Electronic address: chixiayzsq@yahoo.com order DCFs beyond the second of the uniform system as
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input. However, accurate expressions for these higher-ordegntial (), of a system in thermal equilibrium is obtained
DCFs are usually not available. The suggested methodolodyy the basic variational principl30]

in Ref. [22] requires only the second order DCF and the

bridge functional of the uniform system as inputs and these Qin=minQ[p], (D)
inputs can be easily obtained from Ornstein-Zernike integral ) . . o
equation theory for the corresponding uniform system, sdvhere p(r) is the single particle density distribution. The
this methodology should be easy to use for various nonunigrand potential functional)[p] is expressed as

form fluids.

A necessary condition specified in RE22] for the meth- Qlpl=F +J dr o(r N—uwl 2
odology to be used is that the form of the bridge functional Lp]=Fle] p(Ole(r)=u] @
must be one that expresses it as a functional of the indirect . .
correlation functiony. yis then substituted by a combination . The_ Helmho!tz free energy fun'ctlonlﬁl[p] may be di-
of the Ornstein-Zernike equation for the uniform system and"d.ed Into two independent parts: an ideal gas faitp]
the Percus identityEq. (8) below]. But in most cases the Which is exactly known and is given as
bridge functional in IET cannot be expressed as a functional
of the indirect correlation function analytically; an approxi- Fid[p]=,8‘1j dr p(n){In[p(r)A\3]—1} 3)
mation is needed; for example, the hypernetted chain ap-

proximation[3], the mean spherical approximati¢8l, the \yhere) is the thermal de Broglie wavelength, and an excess
Rogers-YoundRY) approximation{28], etc. Thus, the nec- partF_r 5] which is not exactly known, but serves to gen-

essary condition limits the application of the methodology t0gate the hierarchy of direct correlation functions
nonuniform hard sphere fluids only. The condition comes

from the requirement that theoretical predictions should not C(ry,ro,...rnilp])
be dependent on the choice of origin of the coordinate sys- |
tem and cannot be removed. == B3"FelpllSp(r1) dp(ra)...0p(ry). (4)

To widen the applicability of the methodology proposed
in Ref.[22], a numerical version of it was presen{&d], but
this numerical version is still not applicable to some fluids,
such as Lennard-Jones fluids, where the bridge functional i
the IET cannot be expressed as a functional of the indirect _

. . ; ; . = + 6F; Sp(r)+ 6F Sp(r).
correlation function even numerically and with a single #= o) al P1/3p(r) edpl/op(1) ®

value. To apply the methodology based on the universality of oy the case of the grand canonical ensemble we consider

the free energy density functional to various fluids in prin-pere, the chemical potential of the nonuniform fluid is equal
ciple and overcome the shortcomings of previous versions ofy that of the bulk fluid[where g (r)=0 and p(r)=pp]-
DFT, we reformulate the classical DFT also by using thetnis |eads to the density profile eequation

universality of the free energy density functional, but the

present formulation avoids the use of the bridge functional ,(r)=p, exp[—ﬁcpext(r)+C(l)(r;[p(r)])—Cgl)(pb)},

concept. Instead, it uses the concept of the weighted density (6)

to incorporate the functional dependence of the free energy

on space position, but the input parameters include only thwherecg”) is the uniform fluid counterpart a&(™. Now we

radial distribution function and the second order direct corchoose a particle situated at the origin of the bulk fluid by

relation function of the corresponding uniform fluids. following the test particle method due to Perd@d]. For
The plan of the present paper is as follows. In Sec. Il, wethis special type of inhomogeneity when the external poten-

describe the present reformulation of classical DFT in detailtial ¢.,(r) is equal to the interaction potential between par-

In Sec. I, we apply the reformulation to several examples ofticles u(r),

nonuniform fluids to predict the density distribution and

compare the predictions with corresponding computer simu- PexdF)=u(r), @)

lation data to show the validity and accuracy of the present

procedure. In Sec. IV, there is some discussion and concludbe single particle density function is given by

ing remarks about the essential points of the present DFT

The equilibrium density profile of a nonuniform system is
obtained by the Euler-Lagrange equation resulting from the
Variational principle Eq(1):

methodo|ogy_ p(r):pbg(r)! (8)
where g(r) is the radial distribution function of the corre-
Il. REFORMULATION OF THE CLASSICAL DFT BASED sponding bulk fluid. Substituting Eq&7) and(8) into Eq.(6)
ON THE UNIVERSALITY OF THE FREE ENERGY leads to
DENSITY FUNCTIONAL AND THE CONCEPT
OF WEIGHTED DENSITY g(r)=exp{ —Bu(r) +CH(r:[g(r)ps])— C§"(pp)} (9)

We consider a many-particle systépure componentat  for a specified uniform fluid. The radial distribution function
fixed temperaturé&T= "1 and chemical potentigk under  g(r) can be obtained from the IET for uniform fluids, which
the influence of an external potentig},(r). The grand po- is a combination of the Ornstein-Zernik®Z) equation
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Equation (19) is actually equivalent to the simple
h(r)=C52)(f;Pb)+be dryh(r)CE7(r,ri;p) (100 weighted density approximatiatSWDA) [33]. Now we de-
fine the functionalC™Y(r;[p(r)]) as a function of the
and a closure equation relating the correlation functions withweighted density(r) denoted ass(p(r)), that is,
the bridge functionaB(r),

g(r)=exp{—Bu(r)+h(r)—C(r;py) +B(r)}. (1D
Each version of the IET corresponds to a definition for the! n€ form of the functiorG is determined as follows. Substi-
bridge functional. BecausE,[p] and thusC(r:[p(r)]),  tuting Eq.(20) into Eq. (6) and employing Eqs(7) and (8)
its functional derivative with respect fo(r), is, for a given ~1€ad 0
interaction potential, a universal functiorf@?2] of the den-
sity distributionp(r) and is independent of the external po- a(r)=exp{—Bu(r)+G((r)-C(py)}. (21
tential responsible for the generation of the density distribu-
tion p(r), we can specify the functional form of From the numerical solution of the OZ equatid®), we can
CO(r;[p(r)]) from the specific case where the external po-get the radial distribution functiog(r), which can be com-
tential is the interaction potential between a particle situatedhined with Egs.(8) and(17) to calculate the weighted den-
at the origin and the bulk particles. To do so, we first definesity p(r). Then the weighted density obtained is substituted

a weighted density(r) according to the second order direct into Eq.(21) to arrive at the following equation:
correlation function

CH(r; (N =G(p(r)). (20

COE;[p(ND—CP(p) =G(p(r)—C(py)

7= [ ar 1@ r=r koo, @2 T,

where the coefficient can be specified by the normalization

condition For a specified uniform fluid with specific interaction po-

tential u(r) and bulk densityp,, we can calculate the
weighted densityp(r) at different space points. From Eq.
Pb:f dr’ fC(Ir=r"|; pp) pp - (13) (22, we can get the form of the functio®, that is, the
functional form of C(r:[ p(r)]) with respect to the density
Thus distribution functionp(r). The universality of the functional
form of C™Y(r;[p(r)]) enables us to substitute EQ2) into
_ P~y ] Eqg. (6) to obtain the nonuniform fluid density distribution
f l/ J'dr Co'Ir=r"Lipy). (4 p(r) under an arbitrary external potential,(r).

It should be noted that the profile of the radial distribution
function g(r) oscillates, so it is possible that at some space
points, for examplet; andr,, the calculated weighted den-

sity has the same value bg(r,) andg(r,) are different, so
J dr’ C2(r—r'|;p5)=C (pp), (15 G becomes a many-valued functionfr) at some points of
p(r). This is surely the case for the present example of a
we obtain hard sphere fluid and a Lennard-Jones fluid. For these cases,
we chose the space points of the radial distribution function
f= 1/C§)1)/(pb), (16) profile g(r) for which the calculated weighted density is near
and below the bulk density. The calculated weighted density
where Cgl)'(pb) is the derivative of the first order DCE of IS then exactly in the numerical range needed for the iterative

the uniform fluid with respect to the argumeny. solution of Eq.(6). Then a smooth curve, as shown in Fig. 7
From Egs.(12) and(16), we obtain below for the case of the Lennard-Jones fluid state point

ppo>=0.75, kT/e=1.304, can be obtained. We can use a
— ) A~ (2) . (1)’ three-point interpolation procedure with three points ob-
P(r)_f dr’ p(r")Co(Ir=r'[;pp)/C5” (pp)- (17 tained as above as inputs to specify the functional relation-
ship G[ p(r)] for the iterative solution of Eq(6) for a non-
If we define uniform density distribution with any external potential. The
@ _ weighted density is an average of the actual density distribu-
Co(Ir1—r2l;pp) tion and the weighting function has a smoothing effect on the
Cgl)’(pb) oscillatory density profile. Thus, by choosing a good initial
value, for example, the predictions of second order perturba-
then Eq.(17) reduces to tive DFT or the SWDA, for the iterative solution of E(f),
we can expect that the calculated weighted densities from the
density distribution profile of Eq(6) will fall into the re-
quired numerical range even if the external potential is so

Following the sum rule derived from the uniform fluid
limit of Eq. (4),

W(|ri—rsl;pp) = (18

F(r)=fdr’p(r’)w(|r—r’|;pb). (19
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FIG. 1. Density profiles of a hard sphere fluig,¢>=0.62)
confined in a spherical cavity with a hard w&kF 4.50. The lines

correspond. to the predictipns o_f the theory and the points to thf22,3q in the literature and found that the present predic-
corresponding computer simulation dg&b]. tions are superior. To make the figures clear, the predictions
of these two DFTs are not plotted in the same figures. We
also compare the predictions of the present reformulation
Based on the RY and PY approximations for the radial dis-
tribution functiong(r). It was found that the results based on
the RY approximation are superior to those based on the PY
IIl. NUMERICAL SOLUTION AND COMPARISON WITH approximation. It is well known that the PY approximation is

COMPUTER SIMULATION RESULTS less accurate than the RY approximation for prediction of the

First, we apply the above formulation of DFT to two RDF of the bulk fluﬁd. This fact indicates further the impqr—

cases: (1) a hard sphere fluid confined in a spherical cavity!@nce of incorporation of knowledge of the bulk fluid radial
with a hard wall of radiusR, and(2) a hard sphere fluid near distribution functiong(r) into the DFT approximation.

FIG. 2. As in Fig. 1 butp,o®=0.75.

large that strong oscillation of the density distribution profile
results. This is surely the case for the figures presented b
low.

a hard wall. For casél), the external potentiape,(r) re- In Figs. 3 and 4, we compare the predictions of the
sponsible for the generation of the density distributign) present formulation of DFT with the corresponding computer
has the form simulation data[37] for case(2). The agreement is also
good.
o, |r|/le>R To further test the present formulation, we apply it to an
Cext(l) = (23 additional case: a Lennard-Jones fluid confined between two
0, |r|/le<R . ;
' ' hard walls at separatiod. For this case, the external poten-
and for case?2) tial has the form
% 7/0<05 ©, 7z/0<0.5 and/orz/o>H+0.5 )
<pext<z>={ o 05 24 #ed? =0, 05<zlo<H+0S5. =

To proceed numerically, the second order DCF of the,
uniform hard sphere fluid is needed. In the present paper, th% 201
PY result[34] is employed. To solve the OZ equation for & 18-
g(r), the RY approximation[28] is employed because it 164
provides the most accurate data ff(r). A numerically it-
erative and self-consistent procedure is employed to solv
the nonlinear integral equatiai®). p(r)=py is chosen as

1.4 4

124

initial value for solution of the SDWA version of DFT, and 01
the predictions of the SWDA version are used as initial val- 08+
ues for solution of the present reformulation of DFT. 06

In Figs. 1 and 2, the predictions of the present formulation
are plotted with the predictions of the SWDA and the corre- 02
sponding computer simulation dafa5] for case(1). It is ' 1 2 3 4 5 6
shown that the accuracy of the present formulation is fai 2o
superior to that of the SWDA, and the present predictions F|G. 3. Density profiles of a hard sphere fluig,¢-3=0.575)
coincide with the corresponding computer simulation daténear a hard wall. The line corresponds to the predictions of the

almost point by point. | also compared the predictions of thepresent formulation and the points to the corresponding computer
present formulation with those of the most accurate DFTsimulation datd37].

04+
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FIG. 4. As in Fig. 3 butp,o®=0.813.
FIG. 6. As in Fig. 5 but withtH/o=4.

To proceed computationally, the quantiti€?)(r;py) _ _ _
andg(r) are needed. In the present paper, they are obtainegfS€ are also in good agreement with the computer simula-
by solving numerically the OZ equatiq.0) and the closing tOn results. This fact shows further not only the validity of
equation(11). To proceed numerically with Eq$10) and the present reformulation of DFT for fluids of various inter-
(11), we use the thermodynamically self-consistent Rogersction potential, but also that it is not necessary to employ a
Young approximatiori28]. For the Lennard-Jones fluid, the COmputationally intensive perturbative method for long

interaction potentiali(r) has the form range potential fluids. With an accurate numerical solution of
the OZ equation, nonuniform long range potential fluids can
u(r)=4el (a/r) 2= (a/r)8] (26) be studied in the present formalism of DFT in the same man-

ner as nonuniform hard sphere fluids.
where o and e characterize the interaction range and

strength, respectively. IV. CONCLUDING REMARKS
The density profile equatio(6) is plotted and compared ) ] ] ]
with the corresponding computer simulation res{ig] in The present version of DFT is based on the universality of

Figs. 5 and 6 foH/o= 12 and 4, respectively. In Figs. 5 and the free energy density function&le{ p] and hence of its
6, the bulk parameters arg,0°=0.75 andkT/e=1.304. functllonal derlvat|ve—,85Fex[p]./5p(_r),.the.quant|ty that_ is
We plotted the functional relationship oc€®)(r;[p(r)]) requwed to pr.oduce.the density d|§tr|but|on of nonunlform
_Cgl)(pb) as a function of the weighted densfiyr), which fluids. The universality means that its mathematical form is

is also a function of space position, in Fig. 7. We used théndependent of the particular external field, so we can obtain

result of second order perturbative DFT as the initial valug® universal form from some specific external field. In the

for the iterative solution of the present version of DFT. OnePresent paper, the interaction potential of bulk fluid particles
can see that the predictions of the present method for this

22 Ji \‘
| |

p(z)o’

0.8 4

0.6 4

crpe (M)-CVy( P )

0.4

0.2+

0.0 4

]

T T T T T T T
0.50 0.55 0.60 0.65 0.70 0.75

— T T T T T T T T T T T 1 fdr'p(r')w(lr_r'ul;pb)

FIG. 7. The difference between the first order direct correlation
FIG. 5. Density profiles of a Lennard-Jones flijgho®=0.75,  function of a nonuniform fluicC™(r;[ p(r)]) and its uniform fluid
kT/e=1.304 confined between two hard walls witYo=12. The  counterpart Cgl)(pb) as a function of the weighted density
dots represent the corresponding Monte Carlo red@®. Only  [fdr’ p(r")w(|r—r’|;p,). The curve corresponds to the bulk pa-
half the slit is shown. rameterspp,o>=0.75 andk T/ e=1.304.
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is chosen as this external field. Then, by the test particlgation functionC{?)(r,r;py,) of the bulk fluid as input. They

method, we relate the nonuniform fluid under the speciakan pe obtained easily from numerical solution of the OZ
external field to the corresponding bulk fluid. The knowledgegqyation. Another related advantage is that nonuniform flu-
of the bulk fluid can easily be obtained from integral €quasgg \ith gifferent interaction potentials can be treated in a
tion theory, so we can obtain knowledge of nonuniform ﬂu'uniﬁed way, and it is not necessary to resort to the compu-

ids from th? pred!cnons O.f integral equation theory f(_)r thetationally complicated perturbative method for long range
corresponding uniform fluids by the present formulation Ofpotential fluids

DFT. Previous studies on classical DFT employed knowl- With reaard to its application to phase transitions. we onl
edge of only the second order direct correlation function of : 9 IS appiicall P tions, w y

bulk fluids, but structural information of the radial distribu- 9iSCuss the problem in general. The present reformulation of
tion function of bulk fluids was not used. The present papePF T differs from previous versions only by incorporating
provides a systematic procedure to incorporate effectively® radial distribution function of the homogeneous fluid,
knowledge of the structure of the radial distribution functionWhich previous versions did not do. However, the radial dis-
of bulk fluids into the DFT. Obviously, the accuracy of the tribution function and the DCF of a homogeneous fluid are
present formulation of DFT is strongly dependent on thecoupled together by the OZ equation and are two parallel
accuracy of the radial distribution function of the bulk fluid. concepts, so the present reformulation can do all the things

Compared with other versions of DFT, the most notablethat previous versions can do. Our formalism should work
advantage of the present one is that it requires only the radiawell for the transition problems for which previous versions
distribution functiong(r) and the second order direct corre- of DFT work.
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